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1. INTRODUCTION 

Many computer systems exhibit behaviors so inhomogeneous that no direct product form 

queueing network model can accurately estimate throcghput and response time. Examples are 

simultaneous resource possession, preemptive priorities, serialization on software locks, and 

blocking on full b&ers. 

To deal with these cases, performance analysts have been studying how to repment  inho- 

mogeneous behavior with special, possibly nonphysical, servers in a product form model. The 

parameters of the new servers are unknown and may be calculated by iteratively refining guesses; 

product form algorithm are used to obtain fast solutions of the model at each cycle of the itera- 

tion. On convergence, the performance metrics of the frnd product form solution are 

transformed to  solutions of the original system. 

An example is the “surrogate server’’ method devised by Jacobson and Lazowska 

[JACO82]. They used delay servers t o  model the extra queueing caused by jobs waiting for ser- 

vice from a secondary resource while holding a primary resource. Another example is the “sha- 

dow CPU” method of Sevcik [SEVC77]. He split a CPU serving high- and low-priority jobs into 

two, with the low-priority CPU’s service time a degraded value of the original CPU’s low- 



priority service time. In both these cases, guesses of the parameters of the extra servers were suc- 

cessively improved by using the solution of the modified, product form queueing model a t  each 

iteration step. 

Iteration arises in other ways as well. The Bard-Schweitzer approximation to  the mean- 

value equations for product form networks are solved by calculating a series of guesses of the 

device queue lengths IBARD79, SCHW791. 

These and other iteration models have left several fundamental questions unanswered. Is 

there a general principle that explains when an iterative solution will arise? Will the iteration 

converge? If so, is the solution unique? Are there physical interpretations of multiple solutions? 

This paper explores these questions. Section 2 defines a modeling schema in which iteration 

arises; this schema covers a wide variety of practical cases. Section 3 presents conditions on the 

iteration function that guarantee convergent solutions. Section 4 applies this result t o  obtain 

short proofs of convergence for the Jacobson-Lazowska, Sevcik, and Bard-Schweitzer models. 

Section 5 shows that the shadow CPU model may have multiple solutions. A simulation model 

verifies the physical significance multiple solutions. A system with a “superlinear” server (not 

likely to be encountered in practice) may have no solution at all. 

1.1. Related Work 

Several other authors have recently considered the convergence of iterative algorithms for 

queueing network models. The comprehensive paper by de Sousa e Silva et  al. considers itera- 

tions arising in the class of “device-complement” models [deS083]. In thii  class, a network is 

modeled by a collection of subnetworks, each consisting of one of the original servers and an 

equivalent server representing the rest of the original network. The parameters of the equivalent 

server in one subnetwork are derived from the performance measures of the other subnetworks. 

Starting from initial guesses of the performance measures, each of the subnetworks is solved 

again in turn until some convergence criterion is attained. The authors formulate the iteration 



as a noniinear fued-point equation and state that  standard techniques of namerical analysis can 

be applied in specific c a s e  to  determine whether there is a unique, stable solution. They also 

present a new iterative solution for multiple-class networks. 

Eager and Sevcik JEAGE831 and Agrawal [AGRAM] independently discovered proofs that 

the Bard-Schweitrer approximation converges for given initial conditions. 

Galler and Bos derived an iterative approximation for the performance measuru of a 

single-class database system in which transactions can block one another [GALLbSj. They for- 

mulated the convergence question as I fued-point problem and showed that their method pro- 

duces unique solutions under realistic conditions. 

Agrawal proposed a unified framework for the modeling procases associated with queueing 

networks JAGRAM]. He showed that fued-point equations arise frequently in these processu 

and developed techniques for proving convergence of the solutions. This paper is based largely 

ox! that  work. 

2. AN ITERATIVE SCHEMA 

An analysis of a computer system usually starts with an initial model, M,, whose solution 

exists and is known to be sufficiently accurate. But because the equations of M, are typically 

too expensive for a direct solution, the analyst usually transforms M, into a simpler model, A4 , 

whose inexpensive solution approximates that of M,. 

For example, Mi can denote the global balance equations over the system's state space and 

M can be a product form queueing network model. Direct solution of M, is normally too expen- 

sive or infeasible whereas direct solution of M is normally cheap and efKcient. The accuracy of 

M's approximation to  Me's solution depends on the extent to  which M, satisfies network homo- 

geneity, the property that the flow rate between a pair of servers depends only on the queue 

length at the source. 



Figure 1 illustrates these ideas. The original model, M,, is mapped by a forward transfor- 

mation, F ,  into a simpler model, M ,  whose solution is mapped backward as an approximation 

by the reverse transformation, R . The equations arising from this diagram have the form 

where 

p,, p - Parameters of M o  and M , respectively 

0 0 ,  0 - Solutions of M o  and M ,  respectively 

SOLVE(M, P ) - An algorithm that calculates the 

solution of M given parameter values P 

This schema is very general. It says nothing specific about the F ,  R , or SOLVE m a p  

pings. The equations arising in specific cases can be straightforward (as later examples in this 

paper will show) or quite complicated (as in the Galler-Bos model [GALL83]). The solutions 

denoted by Q o  and Q will he some subset of standard performance metrics such as utilizations, 

throughputs, response times, queue lengths, and steady-state probabilities. 

Let us illustrate the schema of Figure 1 with two examples. The fvst is the product-form 

queueing network model. In this case, model M ,  is a system of flow balance equations over the 

system’s states and model M is.a system of flow-balance equations whose solution has the pro- 

duct form. The forward mapping, F , determines the values of one-step mean service times and 

visit ratios, Si and Vi ,  according to the network homogeneity assumption. The solver, 

SOLVE(A4, P ), denotes any one of the queueing network solution algorithms, such M normalis- 

ing constant analysis or mean value analysis, that  evaluates the equations in terms of the param- 

eters Si and V i .  The reverse map, R , is an identity. 



O n  gi nal Model 

Transformed Model 
(more abstract) 

FIGURE 1. Basic Modeling Process. 
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The second example is Sevcik’s shadow CPU model. Figure 2(a) shows the original system, 

in which high-priority (H) jobs and low-priority (L)  jobs use the same CPU; H jobs preempt L 

jobs a t  the CPU. Figure 2(b) shows Sevcik’s transformation, which splits the original CPU into 

two, one for H jobs and the other for L. The service time of CPU-H is the same as in the origi- 

nal system because H jobs never wait for L jobs. All the other parameters of the network are the 

same as in the original system. However, the service time of CPU-L is degraded from the origi- 

nal CPU’s service time for L jobs, S, , to reflect the effect of preemption: 

where U, is the utilization of the original CPU by H jobs. Note how the forward mapping for 

S, ’ depends on both a parameter (S, ) and a metric ( U,) of the original model. 

Because the utilization U, is initially unknown, Sevcik’s algorithm solves the split-CPU 

model iteratively to  construct a series of trial utilizations, UH (01, v,(l) 
vergent solution. Since U, is the only unknown in the forward mapping, a complete solution of 

. . . in search of a con- 

Equations (1) converges when U, converges. 

The Shadow CPU example illustrates a common aspect of modeling: components of the 

solution of one model can become components of the parameters of another model. The notation 

of Equation (1) is purposely general to make this clear. 

In general. when the parameters of M depend on the unknown performance metrics Q o ,  

iteration can be used to refine successive guesses of Q into a solution. When a single unknown 

metric, z of Q o ,  is required to compute the parameters of M ,  the schema is: 



n 

4-b LA-A-1 LA 

L 

H 
1 - u  

(b) Model M . 

FIGURE 2. Seucik's Shadow CPU Model. 
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1. Initialize: z* := z (0 )  

2. Repeat { z := z* 

P := F ( P 0 ,  Qo-{z) ,  2 )  

Q := SOLVE(M, P )  

8 0  := R ( O ) )  

until 1 z - z *  1 < 

3. Output Q o  

This procedure generates a sequenie of estimates Q ' O ) ,  Q"), Q(2) , . . .  until an error measure 

between successive estimates of the unknown metric is sufficiently small. 

In the most abstract terms, this iteration schema is attempting a solution of the nonlinear 

fmed-point equation 

and R, (Q ) denotes the projection of z from set Q . 

The same schema can be generalized to  iterations involving two or more unknown perfor- 

mance metrics. We will not consider this further here. 

As part of the construction of a model according to  the schema of Figure I ,  the analyst 

must ask: 

1. For the given F ,  R , and SOLVE, does the iteration function I have any solution? 

2. Ifso, will the Algorithm (3) converge? 

3. Is the solution unique? 
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The next section characterires the answers to these questions for a large class of practical sys- 

tems. 

3. CONDITIONS FOR CONVERGENCE 

There are two basic approaches to  proving that an iterative algorithm converge to a solu- 

tion. The fvst is a direct application of the definition of convergence: sbowing that the sequence 

of estimates resulting from a given initial condition are successively closer t o  a given limit point. 

This idea underlies Theorem 1, below. The second is indirect: showing that the iteration function 

has properties sufficient to force any sequence of estimates resulting from an allowabk initial 

condition to close on a limit point. This idea underlies Theorem 2, below. When applicable, the 

second approach is the more powerful because it relates the given F , SOLVE, and R mappings 

t o  the convergence question. The goal of this section is a general characterization of the second 

approach under realistic conditions. 

These two basic approaches are stated below as theorems. They apply to a wide range of 

practical problems because performance metria are often monotonic and bounded - for example, 

the throughput is usually a strictly increasing function of any device’s utilization [SURISS] and is 

bounded between 0 and a constant determined by the bottleneck device’s maximum service rate 

[DENN78]. In the following discussion, we seek a solution to I = Z ( r  ) in the range [L , U ]  

where L < U. 

Theorem 1. Monotone Bounded Sequence Thcanm. 

Suppose the algorithm generates estimates I,,, tl, - * - such that  zi < U and, for i > k ,  

2 zi . Then the algorithm converges. 

Sketch ofPr00f: If zi+l = ti for i > k , the algorithm obviously converges. Assume 

ti +1 > s i ,  let di = U -zi , and note that di > 0 and di > di+l. Then 
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which implies the algorithm converges. 

Corollary: If zi 3 L and zifl < zi for all i > k , the iteration converges. 

Theorem 2 is based on a classical result from numerical analysis, which gives a sufficient 

condition for a convergent iteration function [STOESO]. A solution z t o  z = I(.) is called a 

“fued point” because the sequence of estimates of z will be fmed (at z ) if ever one of the esti- 

mates equals z .  A solution z is stable if the successor of each estimate is closer t o  z (i.e., 

I I (zi) - z j 

not be found by iterative algorithms because the successive estimates will diverge from it. An 

unstable futed point cannot be observed in a physical system outside of a short observation inter- 

val because any small change will cause the system’s state t o  drift away from that operating 

point. 

< 1 zi - z 1 ); otherwise the solution is unstable. An unstable fured point can- 

Figure 3 illustrates the basic result from numerical analysis. If the solution z to z = I ( . )  

lies in the interval [ L  , U 1 and the magnitude of the derivative, 1 I ’(z)(, is less than I in that 

interval, the iteration will converge to I. In the figure, an estimate zi < E will generate a next 

estimate zi +1 = I ( zi ) closer to z . ( A  similar statement holds for an estimate zi > z .) If the 

iteration function is not monotone increasing but 1 I ‘(z)l < 1, 

of z from zi , but will still be closer. 

may be on the opposite side 

While the iteration functions for most queueing network models are bounded mootone, and 

continuous, they we seldom well enough behaved for this basic result t o  apply (AGRA83, 

SURI83!. In general, the entire range of z-values will be partitioned into subranges that alter- 

nate between I(.) having slope less than 1 and slope greater than 1. If y = I(.) crosses y = z 

in a subrange of slope less than 1, that  crossing will be a stable fmed point; other crossings will 

be unstable. 



Y 

L 
x i  

FIGURE 3. Basic Numerical Result. 

U 
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Theorem 2. Monotone Bounded Function Theorem. 

Suppose that I (z ) is monotone increasing, bounded, and continuous on the interval 

I L ,  V ] .  S u p p o s e I ( L ) > L  a n d I ( U ) < U .  Then: 

1. There is at least one stable fvted point in (L  , U 1 and 

2. Stable and unstable fvted points alternate. 

Sketch of Proof. Figure 4 illustrates that a continuous bounded curve that lies above 

the 45-degree line for z = L and below that line for z = U must cross that line an odd 

number of times. A crossing may be called a down (up) crossing if I ( . )  passes from 

above the line to below (or below to  above) as z increases. Down- and upcrossings must 

alternate. In Figure 4, zl, z S ,  and z g  are down-crossings while z 2  and z ,  are upcrossings. 

The slope of the monotone increasing function I ( . )  is everywhere a t  least 0. Near a 

down-crossing, I '(z ) must be less than 1, the slope of the 45-degree line. Near an u p  

crossing, I '(2) must be greater than 1. The basic numerical result then implies that  the 

down-crossings are stable fvted points and the upcrossings are unstable. 

The theorem holds even when I (z ) is tangent to y =z ; in this case a point of 

tangency will be both a stable frxed point and an unstable futd point, depending on the 

direction of approach. 

Corollary. Theorem 2 also holds when I (L ) = L or I ( U ) = U 

Sketch of Proof. ff I (L ) = L , then zl = L . If z 1  is a down-crossing, Theorem 2 obvi- 

ously holds; if zI is an upcrossing, there must be a down-crossing z 2  < U on the path 

from I ( . ? :  ) t o  I ( u ) .  Similarly,.ifl ( u )  = u , then zk = u .  If zk ki a down-crossing, 

Theorem 2 obviously holds; if zk is an upcrossing, there must be a down-crossing 

zk -1 2 L on the path from I (L ) t o  I ( z k - ) .  



L U 

Figure 4. illustrating Theorem 2. 
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The uniqueness of the solution for a network whose iteration function is known and satis- 

fies the conditions of Theorem 2 is easy to test. Let zL and zu denote solutions obtained by 

starting with initial guesses z o = L  and zo= U respectively. If zL = zu , the solution is unique. 

Otherwise the remaining solutions can be found by using the bisection method on the interval 

(zL zU ) and repeating the procedure in each subinterval. 

The property expressed by Theorem 2 has been discussed by Courtois for the special case of 

throughput functions of multiprogrammed virtual memory systems ICOUR'IB, COUR??]. It has 

also been used by Galler and Bos in their proof of convergence of their approximation for tran- 

saction blocking in database systems iGALL83]. 

4. CONVERGENCE PROOF EXAMPLES 

This section will outline convergence proofs for three iteration schemata discussed in recent 

queueing network literature. The fvst example is the Bard-Schweitzer mean-value equations; this 

example falls within the scope of the first theorem. The second and third examples are the 

Jacobson-Lazowska surrogate server method and Sevcik's shadow CPU model; they fall within 

the scope of the second theorem. 

4.1. Bard- Sc hw ei toer MV A Approxima tion 

The Bard-Schweitzer equations are an approximation to  the equations of mean value 

analysis (MVA) for solving product-form queueing networks [BARD?S, REIS80, SCHW?S]. 

There are four equations for each i -1, ..., K : 
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N -1 

N R, := S, (1 -t - 'i 1 

K 

x ,  := N / V j R j  
j =l 

ii, * := V i R i X ,  

Starting with the initial condition Ti, * := .V /K , t h a e  SK $1 equations are evaluated repeat- 

edly until all I iii * -4 I < c. The symbols denote physical quantities as follows: 

iii = mean queue length at device i 

R, = mean response time per visit t o  device i 

S, = mean service time at  device i 

Vi = visit ratio for device i 

X ,  = throughput of system 

N = number of jobs in system 

K = number of devices in system 

These equations are an instance of the general model of Figure 1. The original model M, 

has R, = Si (l+iiAi), where iiAi is the m'ean queue length seen by arrivals. According to the 

arrival theorem !BUZEBo], the mean queue length seen by arrivals is the same as the overall 

mean queue length,, with the population reduced by 1 - that  is, KAi (N) = iii (N -1). A derived 

model, M ,  is used t o  determine an estimate of iii (N -1) from iii (N); Schweitrer chose 

N - 1  

N 
- iii (N ) JBARD79]. The Mean Value Analysis equations result when the equation for 

model M is substituted into the equations for model M,. 
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Until recently, no proof of convergence of this algorithm had been known. Then Eager- 

Sevcik and we independently showed that a unique solution is guaranteed for certain initial con- 

ditions. Eager and Sevcik assumed that initially all N jobs are enqueued at the bottleneck dev- 

ice iEAGE83J; their proof exploits the fact that  the sequence of queue length estimates is mono- 

tonic. Their proof does not handle the initial condition stated in the algorithm given above. h 

their paper, de Sousa e Silva et  01. showed the existence of a feasible solution for the multiclass 

version of this approximation but did not prove convergence [deS083]. 

Appendix I contains a detailed convergence proof for the algorithm as stated. The idea is 

as follows. The iteration function of this algorithm is 

- 
fli = Z(El,  . . ., EK) 

N -1 

N 
NDi (l+-iii) 

.. 
- - for i -1, ... ,K 

N - 1  

N 

K 

D j  ( l+-iij) 
j =1 

where Di = Vi S i .  Without loss of generality, assume D < D ,  < 

- ( 0 )  
ni 

- . < D ,  . Let 

= N /K , and ii;"), K;(*), ..., denote the sequence of mean queue length estimates at 

device i . Because this sequence is ultimately monotone and is also bounded (between 0 and N), 

Theorem 1 implies it converges. The same technique can be used for other initial conditions. 

4.2. Jacobson-Lazowska Surrogate Server Method 

Consider a system in which each job follows the behavior cycle: 
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use A 
request B 
while holding B repeat until done 

{ request C 
use B,C 
release C} 

release B 

(See Figure 5(a).) Ordinary queueing networks cannot model this case because they assume each 

job holds only one resource at a time. 

Jacobson and Lazowska analyzed this system with a pair of models (Figure 5(b)) 

IJACO82i. The idea is that model M ,  replaces the B C  subsystem with an equivalent server E, 

and a delay server; E, is flow-equivalent to the B C  subsystem with C removed and with service 

time SE, equal to S,, , the sum of the B service and nonoverlapping C service. The delay strver 

represents g,, the delay caused by queueing for the C resource; g1 is estimated by model M,. 

Model M, also contains an equivalent server E, and a delay server. Server E, is flow- 

equivalent t o  the BC subsystem assuming no queueing occurs for B (Le., assuming B is a pure 

service &!ai.). The de’ 18). -- server - -  represents q 2 ,  che deiay caused by queueing at the B resource; g, 

is aimated by model M,. 

Initially, the queueing delays g I  and gt are unknown; they are determined iteratively by 

this algorithm: 



.. ................................................. .. ............ " ............ ... ...................................... .... 
Subsystem permitting simultaneous 

possession of  resources 6 and C 

A L 
-7 

( 8 )  Model M 

Ib) Model M 

f IGURE 5. Jacobson-L8zowska Surrogate Seruer Model. 
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set q l f  = O 

repeat { 

set = Q,* 

SOLVE M, for RE 
1 

Note that Y and Y , are in general very complex functions of the model parameters. Nonetho 

less, only q1 and q ,  change during the iteration. Therefore, for the purpose of analyzing the 

iteration. we can regard Y :  and Y ,  as functions only of Q, and q,: respectively. Thus the itera- 

tion function is 

Assuming that the service r a t a  of A, B, and C are nondureasing with respect to  their queue 

lengths, 

which implies 

Since q 1  and qt are both nonnegative, and since q1 is maximum when q ,  is zero, the Monotone 

Bounded Function Theorem (Theorem 2) implies that  the algorithm will converge. 
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Jacobson and Lazowska gave a longer proof based on the principles of Theorem 1. 

4.3. Sevcik’s Shadow CPU Method 

Product form queueing network models cannot represent servers that  give priority to  some 

job classes. Sevcik’s method of replacing a CPU with two priority levels with two CPU’s was 

discussed in Section 2 (SEVC771. The iteration function is 

The derivative of this function is [AGRAas] 

This derivative is not, in general, less than 1 in magnitude everywhere. This is because both fac- 

tors U,,/(l-UH) and ~ ~ ( N L , N H - l ) - ~ ~ ( N L I N H )  maybo thbegrea te r than l .  Thesecond 

factor can be greater than 1 because adding a job to the H class can increase congestion else- 

where in the system and reduce the number of L jobs a t  the CPU. The best we can hope for is 

that the second factor is nonnegative, implying that the derivative is nonnegative and (by 

Theorem 2) at least one stable fured point exists. 

We conjecture that a sufficient condition for nonnegative derivative is that the rest of the 

network include only servers whose overall service-rate functions do not rise “superlinearly,” Le., 

they obey the constraint 

where p (  n ) is the server’s rate when the overall queue length is n . If a superlinear server is in 

the network, removal of a class H job may lead to  much reduced service rate a t  that  server. This 

will produce an increase in the class L transit time through the rest of the network, reduce the 
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class L queue at the CPU, and make the derivative in Q. (5) negative. The reasoning behind 

this statement is outlined in Appendix 11. 

A superlinear server is, in effect, a “standby capacity” server that  suddenly provides a 

sharp increase in resources when the queue length becomes sufficiently long. Such scrvcrs are not 

encountered in real systems. Real servers are typically fued-rate servers, multisnvers, delay 

servers, processor-sharing servers, servers whore rates increase less than linearly with queue 

length, and servers whose rates decrease with queue length. The generality of this class explains 

why the iteration function for the Sevcik model is monotone and why no one has found a practi- 

cal system for which this model diverges. 

Figure 6 shows a the parameters of a simple, two-station cyclic network with fmed rate 

servers. The Sevcik iteration function for this network has only one fued point. 

Figure 7 shows another network whose iteration has three fued points; by Theorem 2, only 

two of them are stable. The iterative algorithm will converge on a solution that depends on the 

initial guess, V i o ) .  For example, Vio)=O will cause convergence to  the smaller solution, 

Un = 0.34; U,(’)=l will cause convergence to the larger solution, Un = 0.95. Neither of these 

solutions is close to  the value of U, = 0.66 obtained by solving the exact model, the global bal- 

ance equations. These two solutions, however, have a physical interpretation; we will report 

below on simulation results that indicate the system is bistable with two possible operating 

points. 

5. ANOMALIES 

Two types of anomalous behavior can be encountered with iterative algorithms: divergence 

and multiple stable fmed points. These behaviors will be explained below and illustrated with 

examples in the Shadow CPU model. 
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5.1. Divergence 

If the derivative of the iteration function is negative in some range. the function is not 

monotone increasing and Theorem 2 may not apply. An iterative algorithm may fail t o  find any 

solution for such a network. As noted above, such a network must contain a superlinear server. 

Figure 8 shows the parameters of a two-station cyclic network including a superlinear 

server with rate function 

{ p ( n ) ,  n =1, ... :6} = {1,1,1,1,1,1000} . 

The iteration function has a negative slope everywhere. The function has one unstable fured 

point. Hence the iterative algorithm will suffer oscillatory divergence. 

5.2. Multistable Fixed Points 

Figure 7 showed an instance of a network having two stable solutions; the iterative algo- 

rithm can find either one depending on the initial guess of U, . Do these fixed points represent 

physically observable phenomena, or are they a defect of the modeling technique? 

To answer this question, we simulated the network of Figure 7 for 10,000 simulated 

seconds. A trace of the class H CPU utilization ( U, ) over each 5-second interval is displayed in 

Figure 9. (Class H CPC' service time per visit, S, , is 0.1 seconds and Class L CPU service time 

per visit, S, , is 0.05 second.) While U, is normally around 9596, the system occasionally enters 

the state in which U, is low (about 35%) for a significant period. We conclude that the two 

stable values of U, predicted by the model are both stable .operating points in the corresponding 

real system. 

Figure 10 shows the probability distribution for the network. Curve C is the marginal 

CPU queue length distribution for Class L. It has two well-defined peaks. The right peak occurs 

when almost all Class L jobs are queued at the CPU; in these states the Class H job experiences 
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little contention at Server 2 allowing both throughput X, and utilization U, t o  be high. This 

fact is demonstrated by the dominance of the conditional probability distribution curve B 

(P  ( N I L  1 NIH =1)) over the conditional probability curve A (P (NIL 1 N,, SO)). The 

opposite behavior occurs a t  the left peak when almost all Class L jobs are queued at Server 2. In 

this case. the Class H job experiences significant delay at Server 2 because prioritia are not 

honored there, forcing both X, and U, t o  be low. This argument is supported by the domi- 

nance of curve A over curve B on the left side of the picture. The relatively higher right peak 

corresponds to the observation from the simulation that the higher class H CPU utilization is 

preferred. 

These bistable results are reminiscent. of results observed by Courtois for multiprogrammed 

virtual memory systems susceptible to thrashing JCOUR75, COUR771. In the high-throughput 

(CPU utilization) state, jobs spend little time waiting at paging devices. In the thrashing state, 

the page wait time increases sharply and throughput decreases. Figure 11 helps visualize the 

problem. The horizontal axis is n , the number of thinking terminals. The straight line 

X(N - n  ) denotes the arrival rate of work to  the central subsystem when n jobs are active 

(N - n  jobs are thinking) and the think time is 1 / X .  The curve p(n ) denotes the output rate of 

the central subsystem. The equation 

X ( N - n )  = p ( n )  

expresses a form of flow balance. For certain choices of the parameter X there will be three fmed 

points (compare with Figure 7). The down-crossings, zl and z S  are stable while the up-crossing 

z 2  is unstable. The system will have a high probability of being observed with n near z 1  or z s  

and a low probability of being observed with n near z2. 



FIGURE 11. Application o f  stability theorem to 
uirtual memory system. The straight fine (y=x) 
is the arriual rate to the uirtual memoy subsystem 
and the iteration function I(H) is the corresponding 
output rate. 

A n i v a l  
Rete x 



- 20 - 

6. CONCLUSIONS 

Iteration arises in the solution of queueing network models when the parameters of a 

derived model depend on unknown performance metrics of the original model. Iteration can be 

used to refine successive guesses of the unknown metrics until mutually consistent values of 

metrics and parameters are found. 

There are two basic approaches to  establishing whether an iterative model converges to  a 

solution. One is t o  construct the iteration function and demonstrate that the sequence of uti- 

mates is bounded and ultimately monotonic. The other is t o  show that the iteration function is 

itself bounded and monotonic. in which case iterative solutions are guaranteed to  converge. We 

applied these methods to prove the convergence of the Bard-Schweitzer approximate MVA equa- 

tions, the Jacobson-Lazowska surrogate server model, and Sevcik’s shadow CPU model. 

We also showed that, in general, a model with monotone iteration function may have more 

than one convergent solution. Which one is obtained depends on the initial conditions. We used 

the shadow CPU model to illustate that multiple stable solutions exist and have physical 

interpret at ions. 

We argued that the shadow CPU model can be divergent for all initial conditions if at least 

one non-CPU server is sufficiently superlinear - i.e., becomes increasingly fast as the load on it 

increases. Because such servers are not implemented in practice, we concluded that solutions for 

this model applied to practical systems are always convergent. We speculate that this property 

holds for any queueing network: real servers, whose service functions are typically concave down- 

ward in the queue length, always generate monotone iteration functions. 
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9. APPENDIX I - Proof of Convergence OZ Bard-Schweitztr Approldmaticrar 

th Let denote the m 

Schweitzer iteration function 

estimate of the queue length fii obtained from the Bard- 

N - 1  (I ND, (l+-iii -- -1)) 

N 
for i -1, ..., K and m >O . - ( = I  

“i 

If we can show that this sequence is ultimately monotonic, we can apply Theorem 1 t o  dcduce its 

convergence. We will prove a more detailed proposition,from which the desired m u l t  follows. 

we wig n_se the fellowing notaticc. L:? d”’ = ,e.] f = ( m )  , . . . , p) denote th€ vezisr of 

th mean queue length estimates obtained after the m 

the vector of total service demands (Di = Vi Si ) for each of the devices; without loss of generality, 

iteration. Let D = ( D l ,  . . . , D a )  denote 

we suppose that D,< . 1 <DK . 

Proposition: For all m >O there exists a device index p, (the “partition index”) satbfying: 

(a). isp, E> ni(-)< 

(b). i > P ,  => ni(,)> ni(m-l) 

As m increases, there will be an ultimate value of p, in the set (1, ..., K }. These statements say 

that all the devices numbered l , . . . ,~ ,  have ultimately monotonic decreasing queue length 
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estimates and moreover that the values of the estimates are ordered the same as the values of the 

total demand. 

Proof: 

Baris (m = 1 ) :  Substituting Ei(O1 = N /K into the iteration formula, 

- (1) 
"i 

N - 1  N 
ND,(lt- -1 

N K  

K N - 1  N 
D j  ( l + -  -) 

N X  
j =1 

N 
Di 

K 

C D j  
j =1 

(1) Thus the ordering of { Di } implies the same ordering on the { Ki } and Part d is true. Because 

the estimates are now unequal and ordered, some of them must be less than N /K . So let p be 

the largest device index such that i'i,'') < N /K . Now: 

- (1) - ( 0 )  

(1) - ( 0 )  

a < p l  => ni < n l  , 

i > p ,  => ii, > nl , and 

P1 > Po = 0. 

which establishes Parts a-c. 

d m  -1) Induction: ( 1 ) .  We note first that dm) .D > n 

transformation from m -1 to m reduces all the ii,.(m-l) for i <p, and adds the total reduction 

to the 

weight. 

OD. This is because (by hypothesis) the 

for i >p ,  , thereby shifting value from terms of I n s  weight t o  terms of greater . 

(2). Next we note that i <p, implies iii("fll< iii(") - i.e., the monotonic decrease contin- 

ues. To see this note 
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where the "<" in the numerator follows from Part a of the induction hyp&e& 

the denominator follows from the observation (1) above. 

the '5" ... ;- 

(3) .  The induction hypothesis implies Di <Dj => fii(m)<iij(m). Now, Di <Dj h p l i e s  

which establishes Part d. 

(m 1 . (4). Next we define P , , , + ~  to  be the largest device index i >pm for which iii(m+l)<iii 

This means that pm <i  <p- +I implies that  the device-; mean queue estimate switched from 

increasing to decreasing at the m 

(1) a queue-length estimate continues to decrease. (h'ote that  i fp,  has reached its final value, 

all iii(m) for i >pm will be monotonically increasing for all larger m .) We may now conclude: 

tA iteration. Note pmT1 cannot be smaller than p- because by 

- i-4 - i-1 i < p , + ,  => ni <ni ; 

- (=+u>zi(4; and 
i ; p , , ,  -i "i 

Pn+l 2 Pn; 

as was to  be shown. Now the convergence of the Bard-Schweitrer estimator follows from 

Theorem 1. 

u 
Corollary: Let B,,(") denote the system mean response time estimate after the rn 

The sequence {R,,(") I m 2 0 )  is monotonic increasing. 

iteration. 

Proof: By definition, 

A V  
j = I  

But we showed that the second term in this sum is monotone increasing, which implies that  the 



entire sum is monotone increasing. 

10. APPENDIX II -- Superlinear Servers 

We are interested in the class of networks for which the second term in Q. (5) is nonnega- 

tive. Consider the queue length at CPl7-L: 

= XL s, ’ ( I + %  (N, -1 ,”))  

(AIL 1) 

where S, ’ is the class L service time at CPU-L. From (AII.1) it is clear that 

ii, (NL ,NH - l ) > K L  (N, ,NH) whenever 

x, (nz, ,” -1)  2 x, ( f l L  ,”), f lL  =1, ..., N, . (AIl.2) 

Intuitively, Q. AIL2 will hold if the processing rate ( p )  for each class a t  each server in the 

transformed network satisfies the pair of conditions 
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in a product form network, the service rate p of a load dependent server can depend only 

on the total local queue length n (=nL +nH).  Therefore, 

On substituting (AII.3) into (AII.2), we obtain the sufficient constraint for the monotonicity of 

Q. (5) of the text: 

This constraint is equivalent to the requirement that  nS (n ), where S (n ) is the overall service 

function of the server, is nondecreasing in n . It is interesting to  observe that this condition b 

precisely the constraint on the service function of the central subsystem employed by Galler and 

Bos in their proof of convergence of a different system iGALL831. It is also interesting that the 

overall mean response time per visit to  server i can be written 

where pAi is the arrival distribution. The increasing function nS (m ) implies that  all the mean 

response times, cumulative queue length distributions, throughputs, and utilirationa are inereas- 

ing with respect to load N. (See ala0 [SURI83.] 


